domingo, 13 de janeiro de 2019





+
X
DECADIMENSIONAL
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



+
X
DECADIMENSIONAL
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D





+
X
DECADIMENSIONAL
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



Paradoxo Termodinâmico e a Mecânica Estatística Quântica. .
Em 1902, o físico norte-americano Josiah Williard Gibbs (1839-1903) publicou o livro intitulado Elementary Principles in Statistical Mechanics (Yale University Press), no qual retomou o trabalho do físico austríaco Ludwig Edward Boltzmann (1844-1906) de 1877 (vide verbete nesta série), porém, em vez de tratar um gás como constituído de moléculas em constante colisão, como fizera Boltzmann, Gibbs partiu do espaço de fase T, ocupado pelo gás, e trabalhou com uma função de distribuição (r) de pontos nesse espaço. Num certo instante de tempo t, cada ponto no espaço de fase corresponde a uma cópia do sistema estudado, que está sujeito a determinadas condições macroscópicas. Esta é a idéia de ensemble, e corresponde ao W, número de configurações possíveis de um sistema, considerado por Boltzmann. Desse modo, Gibbs observou que se wr indica o volume ocupado por nr partículas, o volume total nesse espaço, que corresponde a uma particular distribuição das partículas constituintes desse gás, será dado por:
Examinando essa expressão, Gibbs percebeu que havia necessidade de discriminar entre gases consistindo de partículas idênticas. Assim, no livro referido acima, colocou a seguinte questão:Se duas fases diferem somente pelo fato de partículas similares haverem trocado de lugar umas com as outras, elas devem ser consideradas como indistinguíveis ou apenas em fases diferentes? Se as partículas são consideradas como indistinguíveis, então, de acordo com o espírito do método estatístico, as fases devem ser consideradas como idênticas. Essa pergunta ficou conhecida como o famoso Paradoxo Termodinâmico de Gibbs, conforme nos conta Cyril Domb no livro intitulado Twentieth Century Physics, Volume I [Laurie M. Brown, Abraham Pais and Sir Brian Pippard (Editores), Institute of Physics Publishing and American Institute of Physics Press, 1995], enunciado da seguinte maneira:
Sejam dois fluidos colocados em dois recipientes separados por uma barreira. Se os dois fluidos são idênticos e a barreira é removida, não haverá mudança na entropia; se não são idênticos haverá mudança na entropia.
A solução desse paradoxo, qual seja, como distinguir esses dois casos, só foi dada com a introdução da Mecânica Estatística Quântica. Com efeito, em 1924, os físicos, o indiano Satyendra Nath Bose (1894-1974) (Zeitschrift für Physik 26, p. 178) e o germano-norte-americano Albert Einstein (1879-1955; PNF, 1921) (Preussische Akademie der Wissenschaften zu Berlin, Mathematisch-Physikalische Klasse, Sitzungsberichte, p. 261) mostraram que, para partículas indistinguíveis sem limite de número para ocupar qualquer nível de energia, a expressão acima proposta por Gibbs deve ser substituída por (com gi substituindo wi):

Por outro lado, em 1926, os físicos, o italiano Enrico Fermi (1901-1954; PNF, 1938) (Zeitschrift für Physik 26, p. 178) e o inglês Paul Maurice Adrien Dirac (1902-1984; PNF, 1933) (Proceedings of the Royal Society of London A112, p. 661), observaram que a expressão acima deveria ser modificada para tratar o caso de partículas indistinguíveis, em que duas delas não podem ocupar o mesmo nível de energia:

Desse modo, as partículas indistinguíveis são tratadas por esses dois tipos de Estatística e hoje elas são chamadas, respectivamente, de bósons e de férmions.







as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].